Numerical study of turbulent flow over two-dimensional surface-mounted ribs in a channel

Author(s):  
Robert R. Hwang ◽  
Y.C. Chow ◽  
Y.F. Peng
Author(s):  
K. M. Akyuzlu ◽  
M. Chidurala

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature stratification inside a rectangular enclosure. One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional, unsteady Navier-Stokes equations for turbulent compressible flows), and energy equations for the enclosed fluid subjected to appropriate boundary conditions. A standard two equation turbulence model is used to model the turbulent flow in the enclosure. The compressibility of the working fluid is represented by an ideal gas relation. The conservation equations are discretized using an implicit finite difference technique which employs second order accurate central differencing for spatial derivatives and second order (based on Taylor expansion) finite differencing for time derivatives. The linearized finite difference equations are solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns of the problem. Numerical experiments were then carried out to simulate the development of the buoyancy driven circulation patterns inside rectangular enclosures (with aspects ratios 0.5, 1 and 1.5) filled with a compressible fluid (Pr = 0.72). Experiments were repeated for various wall temperature differences which corresponded to Rayleigh numbers between 104 and 106. Changes in unsteady circulation patterns, temperature contours, and vertical and horizontal velocity profiles were predicted while the flow inside the enclosure transferred from laminar to turbulent flow due to the sudden temperature change imposed on the vertical walls of the enclosure. Only the results of the enclosure with aspect ratio one is presented in this paper. These results indicate that this transition is characterized by unicellular circulation patterns breaking up in to multicellular formations and increase in the values of the predicted wall heat fluxes and Nusselt number as flow becomes turbulent.


2003 ◽  
Vol 125 (2) ◽  
pp. 283-290 ◽  
Author(s):  
Mathieu Helene ◽  
Mihai Arghir ◽  
Jean Frene

The present work is a parametric study of the pressure pattern in a two-dimensional recess of a hybrid journal bearing (HJB). It is known that theoretical models of HJB are largely dependent on the recess pressure pattern especially for severe working conditions (high rotation speeds, shallow pockets, etc.). The difficulty is that the recess flow is dominated by the interaction of viscous and inertia forces and cannot be analyzed using a thin film model. The present analysis is based on the numerical resolution of the two-dimensional Navier-Stokes equations where only one recess is modeled (with the film lands and the supply region), the fluid being regarded as incompressible and isothermal. Both the laminar and the turbulent flow regimes are considered. The study is governed by two parameters, one related to the HJB operating conditions and the other related to the recess geometric characteristics. The first parameter is the ratio of the runner versus the supply Reynolds number, Rer/Res∈{0,1/4,1/2,1,4,8}. The supply Reynolds number is fixed at 100 for the laminar regime and at 5000 for the turbulent one. The second parameter is the ratio of the recess depth versus the film thickness. Six values of this ratio are considered, ranging from 4 (shallow recess) to 152 (deep recess). Detailed pressure patterns on the runner wall are presented in a systematic manner giving a clear insight of the flow effects intervening in the recess and of their mutual interaction. Some effects are explained by analyzing the recirculation zones inside the recess. It is also shown that for certain parameters turbulent flows have qualitatively similar effects as laminar ones but they can also have specific trends. In order to sustain this remark, the pressure variation at the recess downstream end is analyzed in the paper. Finally, the present results and specially the turbulent ones are intended to contribute to the understanding of viscous and inertia effects interactions in a recess flow and to represent a database in view of HJB theoretical modeling.


2010 ◽  
Vol 75 (653) ◽  
pp. 629-636 ◽  
Author(s):  
Hideki KIKUMOTO ◽  
Ryozo OOKA ◽  
Hong HUANG ◽  
Takeaki KATSUKI ◽  
Kazuhide ITO

2008 ◽  
Vol 39 (4) ◽  
pp. 347-370
Author(s):  
M. Salmanpour ◽  
O. Nourani Zonouz ◽  
Mahmood Yaghoubi

Sign in / Sign up

Export Citation Format

Share Document